The PHD Finger/Bromodomain of NoRC Interacts with Acetylated Histone H4K16 and Is Sufficient for rDNA Silencing
نویسندگان
چکیده
The SNF2h-containing chromatin-remodeling complex NoRC is responsible for silencing a fraction of mammalian rRNA genes (rDNA). NoRC silences transcription by establishing heterochromatic features-including DNA methylation, hypoacetylation of histone H4, and methylation of H3K9-at the rDNA promoter []. We have investigated the mechanism of NoRC-mediated rDNA silencing and show that binding of the bromodomain of TIP5, the large subunit of NoRC, to acetylated nucleosomes is a prerequisite for NoRC function. A point mutation within the bromodomain impairs the association of NoRC with chromatin, prevents heterochromatin formation, and abolishes transcriptional repression. Moreover, the association of NoRC with chromatin requires acetylation of histone H4 at lysine 16 (acH4K16), and binding to acH4K16 is required for subsequent deacetylation of H4K5, H4K8, and H4K12, indicating that acetylation of H4K16 plays an active role in NoRC-mediated heterochromatin formation. The bromodomain cooperates with an adjacent PHD finger to recruit HDAC1, DNMT1, DNMT3, and SNF2h to rDNA. If specifically targeted to the rDNA promoter, the PHD finger/bromodomain is capable of establishing heterochromatic features and rDNA silencing. Thus, the PHD finger/bromodomain represents an autonomous unit that binds to acH4K16 and coordinates the chain of events that establish the repressed state of rDNA.
منابع مشابه
Molecular Basis of Histone Tail Recognition by Human TIP5 PHD Finger and Bromodomain of the Chromatin Remodeling Complex NoRC
Binding of the chromatin remodeling complex NoRC to RNA complementary to the rDNA promoter mediates transcriptional repression. TIP5, the largest subunit of NoRC, is involved in recruitment to rDNA by interactions with promoter-bound TTF-I, pRNA, and acetylation of H4K16. TIP5 domains that recognize posttranslational modifications on histones are essential for recruitment of NoRC to chromatin, ...
متن کاملEpe1 recruits BET family bromodomain protein Bdf2 to establish heterochromatin boundaries.
Heterochromatin spreading leads to the silencing of genes within its path, and boundary elements have evolved to constrain such spreading. In fission yeast, heterochromatin at centromeres I and III is flanked by inverted repeats termed IRCs, which are required for proper boundary functions. However, the mechanisms by which IRCs prevent heterochromatin spreading are unknown. Here, we identified ...
متن کاملThe Arabidopsis acetylated histone-binding protein BRAT1 forms a complex with BRP1 and prevents transcriptional silencing
Transposable elements and other repetitive DNA sequences are usually subject to DNA methylation and transcriptional silencing. However, anti-silencing mechanisms that promote transcription in these regions are not well understood. Here, we describe an anti-silencing factor, Bromodomain and ATPase domain-containing protein 1 (BRAT1), which we identified by a genetic screen in Arabidopsis thalian...
متن کاملSelective recognition of acetylated histones by bromodomains in transcriptional co-activators.
Bromodomains are present in many chromatin-associated proteins such as the SWI/SNF and RSC chromatin remodelling and the SAGA HAT (histone acetyltransferase) complexes, and can bind to acetylated lysine residues in the N-terminal tails of the histones. Lysine acetylation is a histone modification that forms a stable epigenetic mark on chromatin for bromodomain-containing proteins to dock and in...
متن کاملA histone-mimicking interdomain linker in a multidomain protein modulates multivalent histone binding
N-terminal histone tails are subject to many posttranslational modifications that are recognized by and interact with designated reader domains in histone-binding proteins. BROMO domain adjacent to zinc finger 2B (BAZ2B) is a multidomain histone-binding protein that contains two histone reader modules, a plant homeodomain (PHD) and a bromodomain (BRD), linked by a largely disordered linker. Alt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 15 شماره
صفحات -
تاریخ انتشار 2005